Electrostatic potential between charged particles at an oil-water interface
نویسندگان
چکیده
منابع مشابه
Electrostatic interaction between colloidal particles trapped at an electrolyte interface.
The electrostatic interaction between colloidal particles trapped at the interface between two immiscible electrolyte solutions is studied in the limit of small inter-particle distances. Within an appropriate model analytic expressions for the electrostatic potential as well as for the surface and line interaction energies are obtained. They demonstrate that the widely used superposition approx...
متن کاملUnique assembly of charged polymers at the oil-water interface.
Understanding the interfacial adsorption of polymers has become increasingly important because a wide range of scientific disciplines utilize these macromolecular structures to facilitate processes such as nanoparticle assembly, environmental remediation, electrical multilayer assembly, and surfactant adsorption. Structure and adsorption characteristics for poly(acrylic acid) at the oil-water i...
متن کاملElectrostatic interactions between charged dielectric particles in an electrolyte solution.
Theory is developed to address a significant problem of how two charged dielectric particles interact in the presence of a polarizable medium that is a dilute solution of a strong electrolyte. The electrostatic force is defined by characteristic parameters for the interacting particles (charge, radius, and dielectric constant) and for the medium (permittivity and Debye length), and is expressed...
متن کاملCharged hydrophobic colloids at an oil-aqueous phase interface.
Hydrophobic poly(methyl methacrylate) (PMMA) colloidal particles, when dispersed in oil with a relatively high dielectric constant, can become highly charged. In the presence of an interface with a conducting aqueous phase, image-charge effects lead to strong binding of colloidal particles to the interface, even though the particles are wetted very little by the aqueous phase. We study both the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2020
ISSN: 2470-0045,2470-0053
DOI: 10.1103/physreve.102.020801